
Scenic:
An Open-Source Probabilistic Programming
System for Data Generation and Safety in

AI-Based Autonomy

CVPR Tutorial
June 17, 2024https://scenic-lang.org

Sanjit A. Seshia

UC Berkeley

Edward KimDaniel J. Fremont

UC Santa Cruz

https://scenic-lang.org/cvpr24/

Thanks to our many Scenic Team Members and Contributors
https://docs.scenic-lang.org/en/latest/credits.html

Growing Use of Machine Learning/Artificial Intelligence in
Safety-Critical Autonomous Cyber-Physical Systems

S. A. Seshia 2

Source: gminsights.com

Source: Waymo

Lack of Safety, Dependability, Robustness a Major Obstacle

S. A. Seshia 3

2015

2021

The Verified AI Research Agenda

S. A. Seshia 4

S. A. Seshia, D. Sadigh, S. S. Sastry. Towards Verified Artificial Intelligence.
July 2016. https://arxiv.org/abs/1606.08514. Revision in Communications of the ACM, July 2022.

Create a Design Flow for AI-based Autonomy
supported by Theory, Techniques, and Tools

ensuring Safety, Dependability, and Robustness

https://arxiv.org/abs/1606.08514

Formal Methods: A Key Enabler for Design of Safe AI

5

Precise, Programmatic Environment/System Modeling

http://vehical.org

S. A. Seshia, D. Sadigh, S. S. Sastry. Towards Verified Artificial Intelligence.
July 2016. https://arxiv.org/abs/1606.08514. Revised version in Communications of the ACM, July 2022.

Methodologies for Provably-
Robust System Design

Mathematical Specification
of Requirements and Metrics Scalable Algorithms for

Verification, Synthesis,
Testing, Debugging

ϕ

https://arxiv.org/abs/1606.08514

Scenic

S. A. Seshia 6

VerifAI
High-Level, Probabilistic Programming
Language for World/Environment Modeling

Requirements Specification + Algorithms
for Design, Verification, Testing, Debugging

https://github.com/BerkeleyLearnVerify/Scenic
https://github.com/BerkeleyLearnVerify/VerifAIOpen-Source Tools

Industry Academia Government/
Regulators

for

Improve assurance of
industrial AI systems

Leverage tools in
research & education Evaluate the safety

of AI-based
autonomy

CommunityShare Scenarios and Metrics Develop Corpus of Tools and Data

Tutorial Outline
• Overview of Scenic and Its Applications

– Scenic, VerifAI, and Two Industrial Case Studies

• Introduction to the Scenic 3.0 Language
– Major Language Features with Examples and Hands-On Coding

Coffee Break

• Applications of Scenic
– Systematically test and debug perception, behavior prediction, and planning

components or the full autopilot stack in simulation
– Generate sensor data (e.g. RGB, LiDAR) and labels (e.g. segmentation, 3D

bounding boxes) using Scenic, and perform sim-to-real validation

• Ongoing and Future Directions
– Extended Reality, Large Language Models, and more…

S. A. Seshia 7

SCENIC: Environment Modeling and Data Generation

S. A. Seshia 8

• Scenic is a probabilistic programming language defining distributions over scenes/scenarios
• Use cases: data generation, test generation, verification, debugging, design exploration, etc.

[D. Fremont et al., “Scenic: A Language for Scenario Specification and Scene Generation”, TR 2018, PLDI 2019,
Extended version in Machine Learning journal. https://arxiv.org/abs/2010.06580.]

Image
created
with
GTA-V

Video
created
with
CARLA

Example: Badly-parked car

Some Applications of Scenic

• Modeling, testing, verification

• Exploring system performance
– Generating specialized test sets

• Debugging a known failure
– Generalizing in different directions

• Designing more effective training sets
– Training on hard cases

• Design space exploration
9

[see PLDI’19, MLJ’22 papers]

VERIFAI: A Toolkit for the Design and Analysis of AI-CPS
[Dreossi et al. CAV 2019, https://github.com/BerkeleyLearnVerify/VerifAI]

8

Semantic
Feature
Space

Search Monitor

Simulator

Error
Analysis

System

Environment
(Scenic pgm)

Specification

Falsification

Data Augmentation/ Retraining

Parameter
Synthesis

Fuzz Testing

Failure Analysis

VERIFICATION

DEBUGGING

SYNTHESIS

ROBOTICS

Webots GTA-V LGSVL CARLA X-Plane

AIRCRAFTAUTONOMOUS DRIVING

Statistical Model Checking

https://github.com/BerkeleyLearnVerify/VerifAI

Many Application Domains

S. A. Seshia 11

AEROSPACE SYSTEMS

INDOOR
ROBOTICS

AUTONOMOUS VEHICLES

MULTI-AGENT LEARNING SYSTEMS

AUGMENTED
REALITY

A Full Design Iteration: Autonomous Airplane Taxiing

Modeling Verification Synthesis/Training
 Run-Time Assurance

S. A. Seshia 12

Assured Autonomy

Collaboration with:

D. Fremont et al. Formal Analysis and Redesign of a Neural Network-Based Aircraft Taxiing System with VerifAI.
In 32nd International Conference on Computer Aided Verification (CAV), July 2020.
H. Torfah et al. Learning Monitorable Operational Design Domains for Assured Autonomy. In Proceedings of the
International Symposium on Automated Technology for Verification and Analysis (ATVA), October 2022.

TaxiNet: Deep Learning for Autonomous Taxiing

• Experimental autonomous aircraft
taxiing system developed by Boeing

• Neural network uses camera image
to estimate the cross-track error
– CTE = distance from centerline

• Specification: plane must track
centerline to within 1.5 meters

13

Neural Network

CTE estimate

Controller

Steering, throttle
controls

A Full Design Iteration using Scenic & VerifAI

• Modeling runway scenarios in SCENIC

• Specifying the safety requirement
• Falsifying the system, finding scenarios

when it violates its safety specification
• Debugging to find distinct failures and

their root causes
• Retraining the neural network to

eliminate failures and improve
performance

• Runtime assurance to predict and handle
unsafe situations at run time

14

Modeling with the Scenic Language Semantic features:
time, clouds, rain,
position/
orientation of plane
on the runway

15

Falsification: Algorithmic Search for Unsafe Behaviors

1. Specify safety condition as temporal logic assertion

2. Transform assertion into cost function
 ρeventually = supt∈[0,10] inf[t,∞] (1.5 - CTE(t))

3. Find safety violation by minimizing cost function
– Cost function < 0 Safety violation

• Falsification: out of ~4,000 auto-generated
simulations
– 45% violated
– 9% left runway entirely

16

What Went Wrong? → Debugging & Root Causing

• Falsification found several types of failures, e.g. sensitivity to time

• Follow-up experiments confirmed root cause is the plane’s shadow
17

12 pm 4 pm

Scenic-Guided Retraining

• Use VERIFAI to generate
a new training set
(same size as original)

• Obtained much better
performance
– 17% violated

(vs. 45%)
– 0.6% left runway entirely

(vs. 9%)

18

ORIGINAL

RETRAINED

Retraining
• Eliminated dependence on time of day

19

Robust Operation: Runtime Monitoring and Failure Mitigation

With Simplex

• Automatically extract environment assumptions from Scenic model
• Use the Simplex fault-tolerant architecture with detection of potentially unsafe scenarios

From Simulation to Real-World Testing

S. A. Seshia 21

D. Fremont et al. Formal Scenario-Based Testing of Autonomous Vehicles: From Simulation
to the Real World. In 23rd IEEE International Conference on Intelligent Transportation
Systems (ITSC), September 2020.

22

#1 Safety violations in simulation: Do they transfer
to the real world? How well?

#2 Scenario testability: Can we use formally guided
simulation to effectively design real-world tests?

Fremont, Kim, Pant, Seshia, Acharya, Bruso, Wells, Lemke, Lu, Mehta, “Formal
Scenario-Based Testing of Autonomous Vehicles: From Simulation to the Real
World”, Arxiv e-prints, https://arxiv.org/abs/2003.07739 [ITSC 2020]

From Simulation to Real-World Testing: Key Questions

First use of formal methods for scenario-based testing of AI-based autonomy
in both simulation and real world

https://arxiv.org/abs/2003.07739

23

Create
Simulated

World

Specify
Scenario

Specify
Safety Metrics

Temporal
Logic

Falsification in
VerifAI

Test Case
Selection

Test
Execution
on Track

Data
Analysis

Test
cases

(safe /
unsafe)

Test
cases

(for
track)

Test
data

Results,
Insights

Source: Fremont et al., “Formal Scenario-Based Testing of Autonomous Vehicles: From Simulation to the Real
World”, Intelligent Transportation Systems Conference (ITSC), September 2020. https://arxiv.org/abs/2003.07739

Scenic

Model

Speed, Acceleration,…
No Collision
Rules of the Road
…

Formal Scenario-Based Testing
(with Scenic and VerifAI)

https://arxiv.org/abs/2003.07739

24

Pedestrian fatalities: 53% increase in
the last decade (2009-2019)
2019: ~6500 (estimated)

Fatalities at night (low-light, limited
vision environment)

+53%

67%
Source:
GHSA: https://www.thecarconnection.com/news/1127308_pedestrian-deaths-reach-30-year-high-in-2019
IIHS: https://www.iihs.org/topics/pedestrians-and-bicyclists

17% Of all traffic fatalities, 17% are
Pedestrians

Scenario Overview: Focus on Vulnerable Road Users (VRUs)

https://www.thecarconnection.com/news/1127308_pedestrian-deaths-reach-30-year-high-in-2019
https://www.iihs.org/topics/pedestrians-and-bicyclists

Example Scenario: AV making right turn, pedestrian crossing

S. A. Seshia 25

Lincoln MKZ running Apollo 3.5

Snippet of Scenic program

Results: Falsification and Test Selection

S. A. Seshia 26

safer

unsafeF2: collision

M2: marginally safe

S2: robustly safe

1294 simulations explored
2% violated safety property

Total 7 test cases selected

Results: Does Safety in Simulation Safety on the Road?

S. A. Seshia 27

Unsafe in simulation unsafe on the road: 62.5% (incl. collision)
Safe in simulation safe on the road: 93.5% (no collision)

Results: Why did the AV Fail?

S. A. Seshia 28

Perception Failure: Apollo 3.5 lost track of the pedestrian several times

Fundamental Research - Contract FA8750-18-C-0101

Ecosystem of Design Tools for AI-based Autonomy

S. A. Seshia 29

Scenic + VerifAI

Modeling &
High-Level

Design
Requirements Specification

Fuzz Testing

Falsification

Formal Verification

Debugging
& Triage

Synthesis &
Training

Data Set Design,
Augmentation, Retraining

Querying
Sensor Data

Runtime Monitoring
& Safe Fallback

Supporting the Full Design Cycle

Real-World
Testing

Scenic for Multi-Agent Strategy Games and Extended Reality

S. A. Seshia 30
Modeled on Meta/Oculus EchoArena Virtual Reality Game

Training Human eSports Players in Virtual Reality (VR)

A. Azad, E. Kim, et al. “Programmatic Modeling and Generation of Real-time
Strategic Soccer Environments for Reinforcement Learning,” AAAI 2022.

Programmatic Training of Reinforcement Learning Agents

Google Research Football
(soccer) simulator

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cTnv_d8AAAAJ&citation_for_view=cTnv_d8AAAAJ:bEWYMUwI8FkC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cTnv_d8AAAAJ&citation_for_view=cTnv_d8AAAAJ:bEWYMUwI8FkC

… on to Part 2!

S. A. Seshia 31

A Hands-On Introduction to the Scenic 3.0 Language

INTRODUCTION TO WRITING
SCENIC SCENARIOS

Daniel J. Fremont

University of California, Santa Cruz

The plan
• 9:30: defining static scenarios in Scenic
• 9:40: hands-on time with Colab notebook 1

• 10:05: defining dynamic scenarios in Scenic
• 10:15: hands-on time with Colab notebook 2

• 10:40: more Scenic features
• 10:45: coffee break

2

The history of Scenic
• We’ll be working with Scenic 3.0, the latest version. A bit of history:
• Scenic 1.0 (tech. report 2018; PLDI 2019)

• Static 2D scenarios; interfaces to GTA V and Webots

• Scenic 2.0 (Machine Learning Journal 2022)
• Dynamic 2D scenarios
• Library for driving scenarios; interfaces to CARLA and LGSVL

• Scenic 3.0 (CAV 2023)
• 3D scenarios; precise modeling of shapes & occlusion
• Temporal logic requirements

3

WRITING STATIC SCENARIOS

4

Example: a Badly-Parked Car

5

Example: a Badly-Parked Car

6

Example: a Badly-Parked Car

7

use default values for position,
orientation, and other properties

Example: a Badly-Parked Car

8

Example: a Badly-Parked Car

9

class specifier function

region

Example: a Badly-Parked Car

10

uniform distribution
over this interval

uniform choice of
one of these values

Example: a Badly-Parked Car

11

specifier depending
on car’s width

Example: a Badly-Parked Car

12

operator depending
on car’s position

vector field

Example: a Badly-Parked Car

13

Implicit hard constraints: objects don’t overlap, cars are
contained in the road, ego can see the other car.

Example: a Badly-Parked Car

14

Hands-on Scenic: Static Scenarios
• Work through some examples in
our Colab notebook

• Feel free to try anything out;
we’re here to help!

15

Static Scenic Cheat Sheet

16

WRITING DYNAMIC SCENARIOS

17

Going Beyond Initial Conditions
• Scenic can also describe dynamic agents which take actions over
time, reacting to a changing environment

• Example: ”a badly-parked car, which suddenly pulls into the road
as the ego car approaches”

• The dynamic actions of the car are specified by giving it a behavior

18

Behaviors and Actions
• Behaviors are functions running in
parallel with the simulation,
issuing actions at each time step
• e.g. for AVs: set throttle, set steering

angle, turn on turn signal

• Provided by a Scenic library for the
driving domain

• Abstract away details of simulator
interface

• Behaviors can access the state
of the simulation and make
choices accordingly

Scenic Simulator

Behavior 1

Behavior N

…

actions

state

CARLA,
SVL
…

19

More Advanced Temporal Constructs
• Interrupts allow adding special cases to behaviors without
modifying their code

• Temporal requirements and monitors allow enforcing constraints
during simulation

20

A Worked Example
• OAS Voyage Scenario
2-2-XX-CF-STR-CAR:02

• Lead car periodically
stops and starts; ego car
must brake to avoid
collision

21

A Worked Example: CARLA

22

Hands-on Scenic: Dynamic Scenarios
• We’ll use Scenic’s built-in simple
Newtonian physics simulator

• As before, feel free to improvise!

• We can run some of your scenarios
in CARLA at the end

23

Dynamic Scenic Cheat Sheet

24

MORE SCENIC FEATURES

25

Composing Scenarios
• Scenic allows scenarios
to be defined modularly
and combined into
more complex
scenarios

• Parallel, sequential, and
more complex forms of
composition

26

Orchestrating Simulations
• Recording data from simulations

• Saving and replaying scenes and simulations

• Integration with VerifAI for falsification, optimization, etc.

27

Resources for Learning More
• Documentation: docs.scenic-lang.org

• Installation instructions for all major platforms
• Full versions of today’s tutorials, plus others
• Syntax Guide and detailed Language Reference
• Python API
• How to interface Scenic to a new simulator

• Community forum: forum.scenic-lang.org

28

Main website:

scenic-lang.org

https://docs.scenic-lang.org/
https://forum.scenic-lang.org/

Applications of Scenic
(Part I)
Edward Kim

EECS, UC Berkeley

Outline

1. Sensor Data Collection
2. Testing Perception, Behavior Prediction, and Planners with VerifAI
3. Interfacing Scenic to Your Simulator of Choice

2

Sensor Data Collection

A Set of Sensor Data + GT Labels

Scenic
Program Simulator

sampled
scenario

3

Sensor Data
Generation

4

Testing Perception, Behavior Prediction, and Planners

A Set of Sensor Data + GT Labels

ML
ComponentTest

Scenic
Program Simulator

Challenge:

Defines a Distribution
of Scenarios

How to Search/Sample
Scenarios from the Distribution?

Exploration

Exploitation
5

sampled
scenario

VERIFAI: A Toolkit for the Design and Analysis of
AI-Based Systems

[Dreossi et al. CAV 2019, https://github.com/BerkeleyLearnVerify/VerifAI]
6

Supports Different Search Strategies: [You Can Add Your Own Samplers Too]
Bayesian Optimization, Multi-Arm Bandit, Cross Entropy, Simulated Annealing, Halton, Random

https://github.com/BerkeleyLearnVerify/VerifAI

Testing with
Scenic & VerifAI

7

8

Testing with Scenic & VerifAI

Demo

9

https://docs.google.com/file/d/1RSwSUtpd9RiBJT3mDKPejGNqV0mIhJgJ/preview

Q & A

10

Interfacing Scenic to Your Simulator of Choice

Scenic Simulator
Behavior 1

Behavior N

 …

actions

states

CARLA,
Webots,

etc.

Server Client

Interface
(Simulator.py)

Roles of the Interface
● Initiate Client/Server Communication
● Instantiate the Map, Agents / Objects
● Control the actions of each agent
● Simulate the actions for 1 timestep
● Update the world state at each timestep

11

Interfacing Scenic to Your Simulator of Choice

12

Interfacing Scenic to Your Simulator of Choice

13

Interfacing Scenic to Your Simulator of Choice

14

Interfacing Scenic to Your Simulator of Choice

15

Interfacing Scenic to Your Simulator of Choice

16

Interfacing Scenic to Your Simulator of Choice

https://scenic-lang.readthedocs.io/en/latest/new_simulator.html 17

https://scenic-lang.readthedocs.io/en/latest/new_simulator.html

Summary

1. Flexible Sensor Data Generation using Scenic
2. Testing Perception, Behavior Prediction, and Planners with Scenic & VerifAI
3. Scenic is Simulator-Agnostic & Can be Interfaced to a Simulator of Choice

18

Applications of Scenic
(Part II)
Edward Kim

EECS, UC Berkeley

Outline

1. Debugging ML Models
2. Sim-to-Real Validation
3. Sensor Data Exploration
4. Extended Reality

20

Debugging ML Models

Ground Truth Bounding BoxPrediction Bounding Box

Edward Kim, Divya Gopinath, Corina Pasareanu, Sanjit Seshia, “A Programmatic and Semantic Approach to Explaining and Debugging
Neural Network Based Object Detectors,” CVPR 2020 21

Data Generation Pipeline

22

Data Collection

<e1_1, e1_2, .., e1_n> → correct
<e2_1, e2_2, .., e2_n> → correct
<e3_1, e3_2, .., e3_n> → incorrect
<e4_1, e4_2, .., e4_n> → correct
 . .
 . .
 . .
 . .
 . .
<em_1, em_2, .., em_n> → correct

Classification Problem

Scenes Labels

23
e.g. <weather=’snowy,’ car_model=’cybertruck,’ …. >

Summary on Worst Failure Inducing Rules

24

From Failure Scenic Program

Based on Debugging, Generate Failure Inducing Data

25

Outline

1. Debugging ML Models
2. Sim-to-Real Validation
3. Sensor Data Exploration
4. Extended Reality

26

Sim-to-Real Validation

Do system / component failures identified in simulation actually occur in reality?

Potential Causes of Discrepancy

1. Sensor Data
2. Dynamics Models
3. Agent Behaviors

27

Sim-to-Real Validation

Daniel J Fremont, Edward Kim, Yash Vardhan Pant, Sanjit A Seshia, Atul Acharya, Xantha Bruso, Paul Wells, Steve Lemke, Qiang Lu, Shalin
Mehta, “Formal scenario-based testing of autonomous vehicles: From simulation to the real world,” International Conference on Intelligent
Transportation Systems (ITSC), 2020

28

Experiment Results

29

Collision

Near-Collision

Unsafe with Larger Margin

Effectiveness of the Methodology to Design Test Cases:

Unsafe Tests in Simulation → unsafe in real-world: 62.5%
Marginally safe in simulation → safe in real world: 90%
Robustly safe in simulation → safe in real world: 100 %

Outline

1. Debugging ML Models
2. Sim-to-Real Validation
3. Sensor Data Exploration
4. Extended Reality

30

In this era of AI, terabytes of sensor data are
being collected and labelled.

The size of data matters, but also contents matters
e.g. what if a self-driving car’s training dataset

does not contain any unprotected left turn scenario?

How can we algorithmically explore and understand the dataset?

31

Part 3: Sensor Data Retrieval

Encode Failures as
a Scenario Program

A Given Labelled
Real World Dataset

Proposed
Query

Algorithm

Matching Subset of
Real World Sensor Data

to the Scenario Description

Edward Kim, Jay Shenoy, Sebastian Junges, Daniel J Fremont, Alberto Sangiovanni-Vincentelli, Sanjit A Seshia, “Querying Labelled
Data with Scenario Programs for Sim-to-Real Validation,” International Conference on Cyber Physical Systems (ICCPS), 2022

32

Query Problem

Real Dataset Label SCENIC Program
(= distribution of labels)

∈
?

Time, positions, headings, etc.

33

Methodology

34

SCENIC
Program

Inputs

Label

Satisfiability Modulo Theory (SMT)
Formula

SMT Solver

Is given label
a match?

YES

NO

Experiment
1) Can we query for interesting and realistic scenarios?
2) Do the outputs of the algorithm correspond to the intuitive notion of scenario

matching?

35

Participant 1NuScenes
RGB Images

Scenario
Participant 3

Participant 2

Experiment

Edward Kim, Jay Shenoy, Sebastian Junges, Daniel J Fremont, Alberto Sangiovanni-Vincentelli, Sanjit A Seshia, “Querying Labelled
Data with Scenario Programs for Sim-to-Real Validation,” International Conference on Cyber Physical Systems (ICCPS), 2022 36

Experiment 1 Results

37

Error in the label

Limitation: the query accuracy hinges on the labels’ accuracy

Outline

1. Debugging ML Models
2. Sim-to-Real Validation
3. Sensor Data Exploration
4. Extended Reality

38

Training Motor Skills for Humans in XR

39

Data Collection
(User’s Trajectories, Actions)

Generate
Task

User Knowledge State
(Colored, Directed

Acyclic Graph)

B CA

D E F

G H

I

Next Skill
to Train

Probabilistic Program
Modeling a Distribution of the

Skill’s Training Tasks

Task Evaluation Metric

- Samples & Generates a
Task in VR

- Evaluates the Task

BKT Model
Skill Mastery

Prediction

Evaluated User Performance Result

Update the Modeled User’s Knowledge State Once BKT Predicts Skill Acquisition

VR Simulator

Edward Kim, Zachary Pardos, Bjoern Hartmann, Sanjit Seshia, “A Principled Intelligent Occupational Training of
Psychomotor Skills in Virtual Reality,” UC Berkeley EECS Technical Report No. UCB/EECS-2023-17

Example: Passing to a Dynamic Player

40

https://docs.google.com/file/d/1U8eEPqmh64d7X5xGyf9d-qfcg-KsInbx/preview

Experiment Result

41

Edward Kim, Zachary Pardos, Bjoern Hartmann, Sanjit Seshia, “A Principled Intelligent Occupational Training of
Psychomotor Skills in Virtual Reality,” UC Berkeley EECS Technical Report No. UCB/EECS-2023-17

Summary

We covered different applications of Scenic

1. Testing & Debugging ML Models
2. Test Case Generation for Track Testing for Sim-to-Real Validation
3. Sensor Data Exploration using Scenic as a Query Language
4. Training Humans for Motor Skills in Extended Reality

42

Summary of Tutorial Topics

• Introduction to Scenic and VerifAI
– Two Industrial Case Studies

• Hands-On Introduction to the Scenic 3.0 Language
• Applications of Scenic

– Synthetic Data Generation
– Testing and Falsification
– Interfacing to Simulators
– Debugging ML Models
– Sim-to-Real Validation
– Querying Data with Scenic
– Training in Extended Reality

S. A. Seshia 32

Scenic and VerifAI: Summary of Features and Use Cases

• Classes, Objects, 3D Geometry, and
Distributions

• Local Coordinate Systems
• Readable, Flexible Specifiers
• Declarative Hard & Soft Constraints
• Externally-Controllable Parameters
• Agent Actions and Behaviors,

Interrupts, Termination
• Monitors, Temporal Constraints
• Logging Simulation Data
• Scenario Composition
…

S. A. Seshia 33

• Synthetic Data Generation
• Test Generation, Fuzz Testing
• Requirements Specification
• Falsification, Statistical Model Checking
• Debugging and Triage
• Data Augmentation
• Goal-Directed Parameter Synthesis
• Run-Time Monitor Generation
• Sim-to-Real Validation
• Training Reinforcement Learning Agents
• Training People in Extended Reality
…<your use case here!>

New: Generating Scenic Programs from Natural Language

S. A. Seshia 34

We generate Scenic programs from natural language descriptions of
Autonomous Vehicle crash reports

K. Elmaaroufi, D. Shankar, A. Cismaru, A. Sangiovanni-Vincentelli, M. Zaharia, and S. A. Seshia, "Generating Probabilistic Scenario Programs from Natural Language," April 2024.

ScenicNL: Compound AI System
Input:
Over 500 California DMV Crash Reports of Autonomous
Vehicles for the last 5 years

Output:
A dataset of classified scenarios and corresponding Scenic
programs for a subset of those scenarios

Generating Scenic Programs from Natural Language
SCENARIO DESCRIPTION
A Cruise autonomous vehicle ("Cruise AV"), operating in autonomous mode, was traveling eastbound on Clay Street at the intersection
with Kearny Street when the Cruise AV slowed down. The driver of the Cruise AV disengaged from autonomous mode and, shortly
thereafter, a bicyclist proceeding straight on northbound Kearny Street made contact with the right rear fender of the Cruise AV, damaging
its fender. The bicyclist left the scene without exchanging information. There were no injuries and police were not called.
param map = localPath('../../../assets/maps/CARLA/Town01.xodr')
param carla_map = 'Town01'
model scenic.simulators.carla.model
EGO_MODEL = "vehicle.lincoln.mkz_2017"
EGO_SPEED = 1
EGO_BRAKING_THRESHOLD = .1
BICYCLE_SPEED = 10
BRAKE_ACTION = 1.0
behavior EgoBehavior(speed=10):
 try:
 do FollowLaneBehavior(speed)
 interrupt when withinDistanceToAnyObjs(self, EGO_BRAKING_THRESHOLD):
 #take SetBrakeAction(BRAKE_ACTION)
 do AutopilotBehavior()
behavior BicycleBehavior(speed=5):
 do FollowLaneBehavior(speed)
intersection = Uniform(*network.intersections)
egoLane = Uniform(*intersection.incomingLanes)
bicycleLane = egoLane # Uniform(*intersection.incomingLanes)
egoSpawn = new OrientedPoint on egoLane.centerline
ego = new Car at egoSpawn,
 with blueprint EGO_MODEL,
 with behavior EgoBehavior(EGO_SPEED)
bicycleSpawn = new OrientedPoint on bicycleLane.centerline
bicycle = new Bicycle at bicycleSpawn,
 with behavior BicycleBehavior(BICYCLE_SPEED)

All Scenic code and CARLA renderings generated by scenicNL system 35

Thank you!

S. A. Seshia 36

S. A. Seshia, D. Sadigh, S. S. Sastry. Towards Verified Artificial Intelligence.
Communications of the ACM, July 2022.

Join the Scenic Open-Source Project!

• This Tutorial: https://scenic-lang.org/cvpr24/
• Detailed Documentation: https://docs.scenic-lang.org
• Community Forum: https://forum.scenic-lang.org
• GitHub: https://github.com/BerkeleyLearnVerify/Scenic/
• August 26-28: Scenic Workshop & “Bootcamp” at UC Santa Cruz

https://scenic-lang.org

Thanks to our many Scenic Team Members and Contributors
https://docs.scenic-lang.org/en/latest/credits.html

https://scenic-lang.org/cvpr24/
https://docs.scenic-lang.org/
https://forum.scenic-lang.org/
https://github.com/BerkeleyLearnVerify/Scenic/

	Scenic-CVPR24Tutorial-Opening
	Scenic:�An Open-Source Probabilistic Programming System for Data Generation and Safety in AI-Based Autonomy
	Growing Use of Machine Learning/Artificial Intelligence in Safety-Critical Autonomous Cyber-Physical Systems
	Lack of Safety, Dependability, Robustness a Major Obstacle
	The Verified AI Research Agenda
	Formal Methods: A Key Enabler for Design of Safe AI
	Scenic
	Tutorial Outline
	SCENIC: Environment Modeling and Data Generation
	Some Applications of Scenic
	VerifAI: A Toolkit for the Design and Analysis of AI-CPS
	Many Application Domains
	A Full Design Iteration: Autonomous Airplane Taxiing��Modeling Verification Synthesis/Training Run-Time Assurance
	TaxiNet: Deep Learning for Autonomous Taxiing
	A Full Design Iteration using Scenic & VerifAI
	Modeling with the Scenic Language
	Falsification: Algorithmic Search for Unsafe Behaviors
	What Went Wrong? Debugging & Root Causing
	Scenic-Guided Retraining
	Retraining
	Robust Operation: Runtime Monitoring and Failure Mitigation
	From Simulation to Real-World Testing
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Example Scenario: AV making right turn, pedestrian crossing
	Results: Falsification and Test Selection
	Results: Does Safety in Simulation Safety on the Road?
	Results: Why did the AV Fail?
	Ecosystem of Design Tools for AI-based Autonomy
	Scenic for Multi-Agent Strategy Games and Extended Reality
	… on to Part 2!

	cvpr2024_fremont
	Introduction to Writing�Scenic Scenarios
	The plan
	The history of Scenic
	Writing Static Scenarios
	Example: a Badly-Parked Car
	Example: a Badly-Parked Car
	Example: a Badly-Parked Car
	Example: a Badly-Parked Car
	Example: a Badly-Parked Car
	Example: a Badly-Parked Car
	Example: a Badly-Parked Car
	Example: a Badly-Parked Car
	Example: a Badly-Parked Car
	Example: a Badly-Parked Car
	Hands-on Scenic: Static Scenarios
	Static Scenic Cheat Sheet
	Writing Dynamic Scenarios
	Going Beyond Initial Conditions
	Behaviors and Actions
	More Advanced Temporal Constructs
	A Worked Example
	A Worked Example: CARLA
	Hands-on Scenic: Dynamic Scenarios
	Dynamic Scenic Cheat Sheet
	More Scenic Features
	Composing Scenarios
	Orchestrating Simulations
	Resources for Learning More

	Applications of Scenic
	Scenic-CVPR24Tutorial-Conclusion
	Summary of Tutorial Topics
	Scenic and VerifAI: Summary of Features and Use Cases
	New: Generating Scenic Programs from Natural Language
	Generating Scenic Programs from Natural Language
	Thank you!

